Category Archives: Numpy

Vasaloppet 2018 – race time analysis

An analysis of race times for the ~11000 men and ~2000 women that participated in 2018 Vasaloppet. For explanations of the graphs, see earlier posts on Marcialonga or Tour de Ski. [Btw, the weird looking vertical orange/blue “spike” in the … Continue reading

Posted in Data Analytics, Numpy, Pandas, Python, sports, Statistics, Web | Tagged , , , , | Leave a comment

Tour de Ski Final climb – does age matter for performance ?

In an earlier post, I analyzed data from the Marcialonga Ski race. Marcialonga is one of the classic long distance ski races, where both elite’ as well as amateurs compete together. In fact, the vast majority of the competitors in … Continue reading

Posted in Bayes, Data Analytics, Math, Numpy, Pandas, Probability, PYMC, Python, SNA, sports, Statistics | Tagged , , , , , , , , | Leave a comment

Marcialonga Ski 2018 – some Analytics

Now, with the power grid finally – after 62 hours! – back in business, I’m able to continue my stats/analytics exploration of the past Marcialonga ski race. First, some basic stats about the race: Total number of participants: 5558, of … Continue reading

Posted in Bayes, Data Analytics, Numpy, Pandas, Probability, PYMC, Python, sports, Statistics | Tagged , , , , , , , , , | Leave a comment

Bayesian Linear Regression with PYMC

Python, Pandas & PYMC example on Bayesian Linear Regression, adopted from Richard McElreath’s “Statistical Rethinking” class, where he uses R as modeling language instead of PYMC. Data in a csv-file describe various attributes such as weight, height, age, gender etc … Continue reading

Posted in Bayes, Data Analytics, Numpy, Pandas, Probability, PYMC, Python, Statistics | Tagged , , , , , , , | Leave a comment

Python & Pandas to map gps coordinates to known locations

Assume you have a gps log file, with time and position (Lat,Lon in columns 9,10) info, like: 2018.12.12 00:41:20;0;0;0;0;0;1;0;25.8;59.348978;17.969643;0;0; 2018.12.12 01:41:21;0;0;0;0;0;1;0;25.7;59.348962;17.969627;0;0; 2018.12.12 02:41:21;0;0;0;0;0;1;0;25.7;59.349;17.969688;0;0; 2018.12.12 03:41:21;0;0;0;0;0;1;0;25.7;59.349;17.96966;0;0; 2018.12.12 04:41:22;0;0;0;0;0;1;0;25.6;59.349007;17.969618;0;0; 2018.12.12 04:48:50;0;0;0;0;1;1;1;25.2;59.349007;17.969635;0;0; 2018.12.12 04:49:51;0;0.001;0;0;1;1;1;28.3;59.349;17.969642;0;0; Assume further that you’d like to map each of … Continue reading

Posted in Maritime Technology, Nautical Information Systems, Numpy, Pandas, Python | Tagged , , , | Leave a comment

Using Bayesian Inference to predict and bet on Italian Serie A Fotball

As my old timer readers know, I’be been using Bayesian Inference to predict and bet on various sporting events, such as FIFA World Cup, and IIHF World Championships. With some success. When the Italian premier division started for about a … Continue reading

Posted in Bayes, Data Analytics, Gambling, Machine Learning, Numpy, Probability, PYMC, Python, Simulation, Statistics | Tagged , , , , , , , , , , , , , | Leave a comment

Bayesian Multi-predictor Regression – Valet2018

[Continuing my exploration of the Swedish election results, but I thought this might be of interest also for those of you not very interested in the Swedish elections, simply because the potential MatStat’s  insights – thus, the text is in … Continue reading

Posted in Bayes, Big Data, Data Analytics, Data Driven Management, Numpy, Politik, Probability, PYMC, Python, Research, Society, Statistics, Sverige | Tagged , , , , , , , , , , | 1 Comment

PYMC – Markov Chain Monte Carlo regression – canonical example

Posted in Bayes, Data Analytics, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , | Leave a comment

Val2018 – röstningsmönster i Sveriges län och Stockholms kommuner

I tidigare inlägg har jag redogjort för hur min Bayesian Inference valprediktion lyckades (riktigt bra, tack för att du frågar, bättre än många proffs-tyckare, faktiskt!) 🙂 I detta inlägg presenteras några obearbetade “rådata” kring valutgången och populationen i dels samtliga … Continue reading

Posted in Bayes, Data Analytics, Numpy, Politik, Probability, PYMC, Python, Society, Statistics, Sverige | Tagged , , , , , | Leave a comment

Val2018 – sista prognosen

Första grafen: Bayesian Inference över samtliga opinionsinstituts mätningar augusti-september 2018. Andra grafen: samma rådata som ovan, obearbetat. Stora skuggade stapeln för respektive parti anger valresultatet 2014.  Svarta tunna staplarna är 89:e percentilen.

Posted in Bayes, Data Analytics, Numpy, Probability, PYMC, Python, Statistics, Sverige | Tagged , , , , , , , | Leave a comment