Tag Archives: Python

Capturing NMEA sentences over WiFi using Python

In order to figure out how the NMEA-WiFi Gateway deals with clients, e.g. if it expects any “handshake” or any other communication setup protocol, I decided to write a simulator mimicing the gateway, and then using iRegatta 2 from Zifago … Continue reading

Posted in Data Analytics, Maritime Technology, Nautical Information Systems, NMEA, Numpy, performance, Python, Simulation, TCPIP | Tagged , , , , , , , , , , , , | Leave a comment

Parsing NMEA 0183 sentences in Python

My skipper has recently bought an NMEA wifi gateway, which means that the NMEA messages from the various onboard instruments on his yacht are broadcasted on the yacht’s wifi network. This makes it very easy to grab the NMEA messages, … Continue reading

Posted in Data Analytics, Maritime Technology, Nautical Information Systems, NMEA, Python | Tagged , , , , , | Leave a comment

Making a living as a Professional Scientific Gambler using Bayesian Inference…?

As my readers know, over the past few weeks I’ve been conducting an experiment: Applying scientific betting on the just finished Ice Hockey World Championships.  By “scientific”, I’m referring to the exclusive use of statistical and mathematical models, simulation, and … Continue reading

Posted in Bayes, Data Analytics, Data Driven Management, Finance, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Simulation, Statistics | Tagged , , , , , , , , , | Leave a comment

Scientific Gambling – Ice Hockey World Championships starting tomorrow

The tournament is starting tomorrow with four games. From now on, future posts on this topic on the public Facebook group Scientific Gambling on Ice Hockey World Championships 2018 only. So, I you want to continue following how my Bayesian Inference engine … Continue reading

Posted in Bayes, Big Data, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , , | Leave a comment

Scientific Gambling – how do betting shops make money….?

Betting shops are commercial businesses, that is, they want to and must make money in order to survive. Like any other business. So take a casino as an example: they make money – in the long run – by having … Continue reading

Posted in Bayes, Data Analytics, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Pystan, Python, Simulation, Statistics | Tagged , , , , , , , , , , , | Leave a comment

Scientific gambling – How to identify potentially profitable odds/plays ?

In all sports gambling, success or failure is determined by a number of factors, luck not being the least of them, since in any sport there are loads of “Unknown Unknowns“, which we could also call “Uncertainty”. And then there … Continue reading

Posted in Bayes, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , | Leave a comment

Scientific Gambling on Ice Hockey Worlds – identifying potentially exploitable games

One of the most difficult aspects of dealing with lots of data, is to present the information obtained from various computations in a clear and meaningful way. For instance, in order to identify games where there is a potentially exploitable … Continue reading

Posted in Bayes, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , , | Leave a comment

Scientific Gambling on Hockey Worlds – Expected profits from games of day 1 & 2

An Expected Value-calculation gives the expected gains from my bets on the games played during the first two days of the tournament as follows: OUTCOME U_ODDS U_P P P_DELTA EV_PER_UNIT HOME AWAY CZE SVK DRAW 5.20 0.192308 0.243738 0.051430 0.267438 … Continue reading

Posted in Bayes, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , | Leave a comment

Scientific Gambling on Ice Hockey Worlds – Bets for games of May 5th

Summary I’m using mathematical & statistical methods, more specifically, Bayesian Inference, Markov Chain Monte Carlo, simulation and Probabilistic Programming, attempting to predict the game outcomes of the upcoming Ice Hockey World Championships, starting May 4th. Based on the findings of … Continue reading

Posted in AI, Bayes, Big Data, Business, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , , , | Leave a comment

Bayesian Prediction – wanna bet…? Putting your money where your mouth is…

[A disclaimer: I know virtually nothing about contemporary ice hockey, my interest faded when Börje Salming decided to put his skates on the shelf for a couple of decades ago, so I have not included any personal hockey insights into … Continue reading

Posted in Bayes, Business, Data Analytics, Data Driven Management, Gambling, HOCKEY-2018, Math, Numpy, Probability, PYMC, Python, Statistics | Tagged , , , , , , , , , , , | Leave a comment